在MATLAB中,可以使用多种方法进行预测编程。以下是一些常见的方法和示例代码:
1. 使用MATLAB自带的神经网络工具箱
```matlab
% 加载数据
p = load('shuru.txt');
t = load('shuchu.txt');
% 数据归一化
[pn, minp, maxp, tn, mint, maxt] = premnmx(p, t);
% BP网络训练
net = newff([-1, 1], [5, 1], {'tansig', 'tansig', 'purelin'}, 'traingdx');
net.trainParam.show = 1000;
net.trainParam.Lr = 0.05;
net.trainParam.epochs = 3000;
net.trainParam.goal = 1e-5;
net = train(net, pn, tn);
% 对原数据进行仿真
an = sim(net, pn);
```
2. 灰色预测函数
```matlab
function yc = gm(x0, m)
n = length(x0);
x1 = zeros(1, n);
x1(1) = x0(1);
for i = 2:n
x1(i) = x1(i-1) + x0(i);
end
i = 2:n;
y = zeros(1, n);
y(i-1) = x0(i);
for i = 1:n-1
y(i+1) = y(i) + x0(i);
end
B = [-0.5*(x1(i)+x1(i+1)), ones(n-1,1)];
au = inv(B*B)*B*y;
for i = 1:n+1+m
ago(i) = (x0(1)-au(2)/au(1))*exp(-au(1)*(i-1)) + au(2)/au(1);
end
yc(1) = ago(1);
for i = 1:n-1
yc(i+1) = ago(i+1) - ago(i);
end
end
```
3. 粒子群算法优化BP神经网络预测
```matlab
% 读取数据
data = xlsread('data.xlsx', 'Sheet1', 'A1:N252');
input = data(:, 1:end-1);
output = data(:, end);
% 划分训练集和测试集
% 归一化
% 确定BP神经网络的隐含层最优节点数量
% 使用粒子群算法优化BP的神经网络权重和阈值
% 利用优化后的参数训练BP神经网络
% 计算BP和PSO-BP的测试集预测误差
```
4. 状态空间模型和MPC控制器
```matlab
% 创建一个简单的状态空间模型
A = [1 1; 0 1];
B = [0.5; 1];
C = [1 0];
D = 0;
sys = ss(A, B, C, D);
% 构建MPC控制器
mpcobj = mpc(sys);
mpcobj.PredictionHorizon = 10;
mpcobj.ControlHorizon = 3;
% 设置输入输出约束
mpcobj.MV.Min = -2;
mpcobj.MV.Max = 2;
mpcobj.OV.Min = -1;
mpcobj.OV.Max = 1;
% 设置权重
mpcobj.Weights.MV = 0.1;
mpcobj.Weights.MVRate = 0.1;
mpcobj.Weights.OV = 1;
% 仿真跑起来
t = 0:50;
r = 0.5*square(0.1*t);
[y, t, u] = sim(mpcobj, 51, r);
```
5. 使用拟合工具箱