编写病毒扩散程序需要考虑多个方面,包括病毒的传播机制、人群的移动和状态变化、以及数据的可视化等。以下是一个简单的Python示例,用于模拟病毒在人群中的扩散过程:
```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
定义人群类
class Person:
def __init__(self, x, y, state=0):
self.x = x
self.y = y
self.state = state
定义人群集合
class People:
def __init__(self, count=1000, first_infected_count=3):
self.count = count
self.first_infected_count = first_infected_count
self.people = self.init()
def init(self):
self._people = np.random.normal(0, 100, (self.count, 2))
self.reset()
def reset(self):
初始化人群状态
self.people[:, 2] = np.random.choice([0, 1, 2, 3, 4, 5], size=self.count)
def move(self, direction):
定义移动方向
dx, dy = direction
new_x, new_y = self.people[:, 0] + dx, self.people[:, 1] + dy
检查新位置是否有效
if 0 <= new_x < 100 and 0 <= new_y < 100:
self.people[:, 0], self.people[:, 1] = new_x, new_y
def infect(self, person, virus):
感染逻辑
if person.state == 0 and np.random.random() < virus.spread_rate:
person.state = 1 疑似
virus.infected_count += 1
定义病毒类
class Virus:
def __init__(self, spread_rate=0.8, infection_radius=5):
self.spread_rate = spread_rate
self.infection_radius = infection_radius
self.infected_count = 0
def spread(self, people):
扩散逻辑
for i in range(people.count):
person = people.people[i]
if person.state == 1:
for j in range(people.count):
if i != j and np.linalg.norm(np.array([person.x, person.y]) - np.array([people.people[j], people.people[j]])) < self.infection_radius:
people.infect(people.people[j], self)
初始化人群和病毒
people = People()
virus = Virus()
模拟病毒扩散
fig, ax = plt.subplots()
scatter = ax.scatter(people.people[:, 0], people.people[:, 1], c=people.people[:, 2])
def update(frame):
global virus, people
virus.spread(people)
for i in range(people.count):
person = people.people[i]
if person.state == 1:
scatter.set_offsets(np.c_[person.x, person.y])
return scatter,
ani = FuncAnimation(fig, update, frames=range(100), interval=50, blit=True)
plt.show()
```
代码说明:
Person类 :表示一个人,包含坐标和状态。People类:
表示人群,包含人群的坐标和状态,并提供初始化、移动和感染方法。
Virus类:
表示病毒,包含传播率和感染半径,并提供扩散方法。
模拟过程
初始化人群和病毒。
使用`matplotlib`的`FuncAnimation`进行动画模拟,每帧更新病毒扩散和人群状态。
这个示例是一个简单的模拟,实际应用中可能需要根据具体需求进行调整和扩展。