回归算法的程序代码可以根据不同的算法和应用场景有所不同。以下是几种常见回归算法的Python代码实现:
1. 简单线性回归
```python
import numpy as np
import matplotlib.pyplot as plt
生成数据
X = np.linspace(0, 10, num=30).reshape(-1, 1)
w = np.random.randint(1, 5, size=1)
b = np.random.randint(1, 10, size=1)
y = X * w + b + np.random.randn(30, 1)
绘制数据
plt.scatter(X, y)
正规方程求解
X_b = np.concatenate([X, np.full((30, 1), fill_value=1)], axis=1)
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print('一元一次方程真实的斜率和截距是:', w, b)
```
2. 逻辑回归
```python
import numpy as np
import matplotlib.pyplot as plt
生成数据
X = np.linspace(-10, 10, num=100).reshape(-1, 1)
y = 2 * (X > 0) - 1 + 0.1 * np.random.randn(100, 1)
定义sigmoid函数
def sigmoid(z):
return 1 / (1 + np.exp(-z))
定义损失函数
def loss(h, y):
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
定义梯度
def gradient(h, y):
return (h - y) * (1 / h) * (1 - h)
随机初始化权重
w = np.random.randn()
b = np.random.randn()
训练
learning_rate = 0.1
num_iters = 1000
for i in range(num_iters):
z = X.dot(w) + b
h = sigmoid(z)
dw = (1 / len(X)) * X.T.dot(h - y)
db = (1 / len(X)) * np.sum(h - y)
w -= learning_rate * dw
b -= learning_rate * db
print('逻辑回归的权重和截距是:', w, b)
```
3. 弹性网络回归
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
生成数据
X = np.random.rand(100, 1)
y = 2 * X + 1 + 0.1 * np.random.randn(100, 1)
划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
定义模型
model = ElasticNet(alpha=0.1, l1_ratio=0.5)
训练模型
model.fit(X_train, y_train)
预测
y_pred = model.predict(X_test)
评估模型
mse = mean_squared_error(y_test, y_pred)
print('弹性网络回归的均方误差是:', mse)
```
这些代码示例展示了如何使用Python实现简单线性回归、逻辑回归和弹性网络回归。根据具体的应用场景和数据集,可能需要对代码进行进一步的调整和优化。