回归算法程序代码是什么

时间:2025-01-28 17:29:28 手机游戏

回归算法的程序代码可以根据不同的算法和应用场景有所不同。以下是几种常见回归算法的Python代码实现:

1. 简单线性回归

```python

import numpy as np

import matplotlib.pyplot as plt

生成数据

X = np.linspace(0, 10, num=30).reshape(-1, 1)

w = np.random.randint(1, 5, size=1)

b = np.random.randint(1, 10, size=1)

y = X * w + b + np.random.randn(30, 1)

绘制数据

plt.scatter(X, y)

正规方程求解

X_b = np.concatenate([X, np.full((30, 1), fill_value=1)], axis=1)

theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

print('一元一次方程真实的斜率和截距是:', w, b)

```

2. 逻辑回归

```python

import numpy as np

import matplotlib.pyplot as plt

生成数据

X = np.linspace(-10, 10, num=100).reshape(-1, 1)

y = 2 * (X > 0) - 1 + 0.1 * np.random.randn(100, 1)

定义sigmoid函数

def sigmoid(z):

return 1 / (1 + np.exp(-z))

定义损失函数

def loss(h, y):

return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()

定义梯度

def gradient(h, y):

return (h - y) * (1 / h) * (1 - h)

随机初始化权重

w = np.random.randn()

b = np.random.randn()

训练

learning_rate = 0.1

num_iters = 1000

for i in range(num_iters):

z = X.dot(w) + b

h = sigmoid(z)

dw = (1 / len(X)) * X.T.dot(h - y)

db = (1 / len(X)) * np.sum(h - y)

w -= learning_rate * dw

b -= learning_rate * db

print('逻辑回归的权重和截距是:', w, b)

```

3. 弹性网络回归

```python

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import ElasticNet

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

生成数据

X = np.random.rand(100, 1)

y = 2 * X + 1 + 0.1 * np.random.randn(100, 1)

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

定义模型

model = ElasticNet(alpha=0.1, l1_ratio=0.5)

训练模型

model.fit(X_train, y_train)

预测

y_pred = model.predict(X_test)

评估模型

mse = mean_squared_error(y_test, y_pred)

print('弹性网络回归的均方误差是:', mse)

```

这些代码示例展示了如何使用Python实现简单线性回归、逻辑回归和弹性网络回归。根据具体的应用场景和数据集,可能需要对代码进行进一步的调整和优化。